GCP – How Conversational Analytics helps users make the most of their data
At Google Cloud Next 25, we expanded the availability of Gemini in Looker, including Conversational Analytics, to all Looker platform users, redefining how line-of-business employees can rapidly gain access to trusted data-driven insights through natural language. Due to the complexity inherent in traditional business intelligence products, which require steep learning curves or advanced SQL knowledge, many potential users who could benefit from BI tools simply don’t. But with the convergence of AI and BI, the opportunity to ask questions and chat with your data using natural language breaks down the barriers that have long stood in the way.
Conversational Analytics from Looker is designed to make BI more simple and approachable, democratizing data access, enabling users to ask data-related queries in plain, everyday language, and go beyond static dashboards that often don’t answer all potential questions. In response, users receive accurate and relevant answers derived from Looker Explores or BigQuery tables, without needing to know SQL or specific data tools.
For data analysts, this means fewer support tickets and interruptions, so they can focus on higher priority work, Business users can now take on their own data queries themselves and get answers, empowering trusted self-service by , putting the controls in the hands of users who need the answers most. Now, instead of struggling with field names and date formats, users can simply ask questions like: “What were our top-performing products last quarter?” or say “Show me the trend of website traffic over the past six months.” Additionally, when using Conversational Analytics with Looker Explores, users can be sure tables are consistently joined and metrics are calculated the same way every time.
With Conversational Analytics, ask questions of your data and get AI-driven insights.
Conversational Analytics in Looker is designed to be simple, helpful, and easy to use, offering:
-
Trusted, consistent results: Conversational Analytics only uses fields defined by your data experts in LookML. Once the fields are selected, they are deterministically translated to SQL by Looker, the same way every time.
-
Transparency with “How was this calculated?”: This feature provides a clear, natural language explanation of the underlying query that generated the results, presented in easy-to-understand bullet points.
-
A deeper dive with follow-up questions: Just like a natural conversation, users can ask follow-up questions to explore the data further. For example, users can ask to filter a result to a specific region, to change the timeframe of the date filter, or to switch from bar graph to an area chart. Conversational Analytics allows for seamless iteration and deeper exploration of the data.
-
Hidden insights with Gemini: Once the initial query results are displayed, users can click the “Insights” button to ask Gemini to analyze the data results and generate additional insights about patterns and trends they might have otherwise missed.
- aside_block
- <ListValue: [StructValue([(‘title’, ‘Try Google Cloud for free’), (‘body’, <wagtail.rich_text.RichText object at 0x3e6ec440a400>), (‘btn_text’, ‘Get started for free’), (‘href’, ‘https://console.cloud.google.com/freetrial?redirectPath=/welcome’), (‘image’, None)])]>
Empowering data analysts and developers
With the release of Conversational Analytics, our goal is for it to benefit data analysts and developers on top of line-of–business teams. The Conversational Analytics agent lets data analysts provide crucial context and instructions to Gemini, enhancing its ability to answer business user questions effectively, and empowering analysts to map business jargon to specific fields, specify the best fields for filtering, and define custom calculations.
Analysts can further curate the experience by creating agents for specific use cases. When business users select an agent, they can feel confident that they are interacting with the right data source.
As announced at Next 25, the Conversational Analytics API will power Conversational Analytics across multiple first-party Google Cloud experiences and third-party products, including customer applications, chat apps, Agentspace, and BigQuery, bringing the benefits of natural language queries to your data to the applications where you work every day. Later this year we’ll also bring Conversational Analytics into Looker Dashboards, allowing users to chat with their data in that familiar interface, whether inside Looker or embedded in other applications.Also, if you’re interested in solving even more complex problems while chatting with your data, you can try our new Code Interpreter (available in preview), which uses Python rather than SQL to perform advanced analysis like cohort analysis and forecasting. With the Conversational Analytics Code Interpreter, you can tackle data science tasks without learning advanced coding or statistical methods. Sign up for access here.
Expanding the reach of AI for BI
Looker Conversational Analytics is a step forward in making BI accessible to a wider audience. By removing the technical barriers and providing an intuitive, conversational interface, Looker is empowering more business users to leverage data in their daily routines. With Conversational Analytics available directly in Looker, organizations can now make data-driven insights a reality for everyone. Start using Conversational Analytics today in your Looker instance.
Read More for the details.