AWS – Bottlerocket now supports NVIDIA Fabric Manager for Multi-GPU Workloads
Today, AWS has announced that Bottlerocket, the Linux-based operating system purpose-built for containers, now supports NVIDIA Fabric Manager, enabling users to harness the power of multi-GPU configurations for their AI and machine learning workloads. With this integration, Bottlerocket users can now seamlessly leverage their connected GPUs as a high-performance compute fabric, enabling efficient and low-latency communication between all the GPUs in each of their P4/P5 instances. The growing sophistication of deep learning models has led to an exponential increase in the computational resources required to train them within a reasonable timeframe. To address this increase in computational demands, customers running AI and machine learning workloads have turned to multi-GPU implementations, leveraging NVIDIA’s NVSwitch and NVLink technologies to create a unified memory fabric across connected GPUs. The Fabric Manager support in the Bottlerocket NVIDIA variants allows users to configure this fabric, enabling all GPUs to be used as a single, high-performance pool rather than individual units. This unlocks Bottlerocket users to run multi-GPU setups on P4/P5 instances, significantly accelerating the training of complex neural networks. To learn more about Fabric Manager support in the Bottlerocket NVIDIA variants, please visit the official Bottlerocket GitHub repo.
Read More for the details.